A Formal Total Synthesis of (-)-FR901483, Using a Tandem Cationic Aza-Cope Rearrangement/Mannich Cyclization Approach

Kay M. Brummond* and Sang-phyo Hong
Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
kbrummon@pitt.edu

Received September 16, 2004

A formal total synthesis of the immunosuppressant FR901483 has been accomplished. The key step in the synthesis utilizes a tandem cationic aza-Cope rearrangement/Mannich cyclization reaction for accessing the unprecedented bridging tricyclic azaspirane substructure of this compound. The tandem reaction proceeds through a bridgehead iminium ion, a functionality that has rarely been explored in the context of natural product syntheses. Improved stereoselectivity was observed in an aldol reaction when using a Boc-protected amino aldehyde and zinc chloride as an additive. A stereoselective epimerization of the aldehyde-containing stereocenter was achieved with L-phenylalanine upon completion of the Mannich cyclization. Finally, this synthesis is the only one to date that controls the stereochemistry of the oxygen-bearing stereocenters. All other synthetic routes required late stage adjustments to at least one of these stereocenters.

Introduction

FR901483 (1) was discovered by researchers at Fujisawa Pharmaceutical Company Ltd as part of an ongoing effort to isolate new compounds that operate as immunosuppressants via a mechanism that is unique from either cyclosporin A or FK506 (Figure 1). ${ }^{1}$ Experimental results suggest that FR901483 is likely to operate through an antimetabolite effect on immunocompetent cells by interfering with the enzymes adenylosuccinate synthetase and/or adenylosuccinase. Further information concerning the biological activity of this compound has not been forthcoming. However, one can speculate that the activity may result from FR901483 serving as a competitive inhibitor for inositol monophosphate (IMP) or an analogue of IMP.

This compound has captured the attention of the synthetic community due to its unprecedented bridging tricyclic azaspirane substructure. ${ }^{2}$ Nearly all synthetic approaches to FR901483 (1) involve initial formation of a spirolactam 2, followed by a ring closing reaction to form the bicyclic [3.3.1] ring system (pathway a) (Scheme 1). This strategy has been postulated to most closely mimic the biosynthesis of the natural product from

[^0]tyrosyltyrosine. An alternative strategy involves formation of the [3.3.1] bicyclic ring system 3, then ring closure to form the pyrrole (pathway b). Our group ${ }^{21}$ and Kibayashi's ${ }^{2 g}$ have adopted the latter approach, with both routes proceeding through a bridgehead iminium ion. Advantages to pathway b include the ease in which the bicyclic [3.3.1] ring systems can be formed, the conformational immobility of this ring system, and finally the potential to explore bridgehead iminium ion chemistry in the context of natural product synthesis. ${ }^{3}$

[^1]

FIGURE 1.

SCHEME 1

Our approach to the core structure of FR901483 (1) utilizes the elegant chemistry developed in the Overman group, the tandem cationic aza-Cope rearrangement/ Mannich cyclization reaction, to afford formyl pyrroles. ${ }^{4}$ Our retrosynthetic strategy was described in an initial communication where it was demonstrated that the bridging tricyclic azaspirane substructure could be obtained by using a tandem cationic aza-Cope rearrangement/Mannich cyclization reaction on a model system possessing only the functionality needed for the rearrangement. ${ }^{2 l}$ Based upon preliminary results from this successful model system, we set out to prepare a fully functionalized precursor, which upon completing the tandem cyclization reaction, could then be converted to FR901483. The retrosynthetic strategy is shown in Scheme 2. First, it was envisioned that the methylamine group of 1 could be obtained from the aldehyde of 4 via a Curtius rearrangement. Next, the formyl pyrrolidine of 4 should be available via a Mannich cyclization from the intermediate iminium ion 5 . The potential to control the stereochemistry of the aldehyde during the cyclization step seemed possible by way of the flanking axial hydroxyl group. The iminium ion 5, in turn, is the product of the cationic aza-Cope rearrangement of the bridgehead iminium ion 6, which is obtained by an intramolecular condensation reaction between the carbonyl group and the secondary amine of compound 7 . The driving force of the aza-Cope rearrangement/Mannich cyclization should be substantial enough to overcome the axial orientation of both protected hydroxyl groups. Finally, compound 7 can be accessed via an aldol reaction between commercially available ketone 8 and a single enantiomer of the Boc-protected amino aldehyde $\mathbf{9}$, followed by an amine alkylation with homoallylic halide $\mathbf{1 0}$ or a synthetic equivalent thereof.

Results and Discussion

Construction of the rearrangement precursor 7 involves an aldol condensation between a single enantiomer

[^2]of the amino aldehyde $\mathbf{9}$ and the monoketal of 1,4cyclohexanedione 8. Unfortunately, aldol condensations with N-protected α-amino aldehydes are characterized by rather low distereoselectivities. ${ }^{5}$ However, the rapid manner in which precursor 7 can be assembled via this aldol condensation was our incentive to investigate this reaction. As anticipated, treatment of ketone 8 with LDA at $-78{ }^{\circ} \mathrm{C}$, followed by addition of aminoaldehyde 9 resulted in the aldol condensation as a mixture of products (Scheme 3). However, a major product was obtained and readily isolated from the others via flash chromatography. This compound was determined to possess the stereochemistry of that needed for elaboration of FR901483 by X-ray crystallographic analysis. ${ }^{6}$ The stereochemistry obtained for this diastereomer is consistent with a Cram chelation control model in the aldol condensation reaction, thus, a variety of conditions were tried in an effort to increase the selectivity. The highest selectivity was obtained by the formation of the lithium enolate of ketone $\mathbf{8}$ with LDA, followed by addition of 1 equiv of zinc chloride. ${ }^{7}$ Addition of aldehyde 9 to the enolate of $\mathbf{8}$ afforded a 3.6:1 ratio of the desired isomer to an inseparable mixture of compounds in a combined yield of $\sim 72 \% .^{8}$

Next, the carbonyl of β-hydroxy ketone 11 was reduced with NaBH_{4} in MeOH to afford the desired diol 14 as a single isomer (Scheme 4). ${ }^{9}$ The excellent selectivity was thought to be a result of the appending hydroxymethyl and ketal groups locking the conformation of cyclohexanone 11 then axial delivery of the hydride to the less hindered face. Reaction of the MOM protected ketone 13 with NaBH_{4} in MeOH at $-78{ }^{\circ} \mathrm{C}$ also afforded 15 as a single isomer in a nearly quantitative yield. When the Luche reduction protocol was used, both ketones 11 and $\mathbf{1 3}$ gave a 1:1 mixture of stereoisomers 14 and $\mathbf{1 5}$ in 96% and 99% yield, respectively. The configuration of diol 14 was confirmed by X-ray crystallographic analysis at a later stage in the synthesis and found to be the desired stereochemistry.

Next, diol 14 was protected as the dibenzyl ether 16 with $\mathrm{Ag}_{2} \mathrm{O}$ and ${ }^{n} \mathrm{Bu}_{4} \mathrm{NI}$ in benzyl bromide (neat). Typical benzyl ether protection protocols $\left(\mathrm{NaH}, \mathrm{BnBr}, \mathrm{Bu}_{4} \mathrm{NI}\right.$, DMF or NaH , neat $\mathrm{BnBr}, \mathrm{Bu}_{4} \mathrm{NI}$, or $\mathrm{Ag}_{2} \mathrm{O}, \mathrm{BnBr}, \mathrm{Bu}_{4} \mathrm{NI}$, DMF) afforded only $30-40 \%$ yield of $16 .{ }^{10}$ These latter conditions gave significant quantities of cyclic carbamate $\mathbf{1 7}^{11}$ and an unidentifiable compound. Next, the Boc
(5) For a review, see: Jurczak, J.; Golebiowski, A. Chem. Rev. 1989, 89, 149 and references therein.
(6) The X-ray crystallographic data have been included in the Supporting Information as a CIF file and have been deposited at the Cambridge Crystallographic Data Centre and allocated the deposition numbers CCDC 254173 and 254174.
(7) Pridgen, L. N.; Abdel-Magid, A. F.; Lantos, I.; Shilcrat, S.; Eggleston, D. S. J. Org. Chem. 1993, 58, 5107.
(8) Since the other compounds could not be separated and fully characterized, this yield is based upon the assumption that these products are the undesired aldol diastereomers. Indirect support for the diastereomeric aldol adducts is the clean conversion of the mixture compounds to pyrrole 12 upon standing neat at room temperature. Pyrroles have been previously obtained in this manner, see: Konieczny, M. T.; Cushman, M. Tetrahedron Lett. 1992, 33, 6939.
(9) Thompson, S. H. J.; Mahon, M. F.; Molloy, K. C.; Hadley, M. S.; Gallagher, T. J. Chem. Soc., Perkin Trans. 1 1995, 379. At this point, we could not determine the newly formed stereocenter, but it was presumed that axial attack occurred predominantly.
(10) Kuhn, R.; Trishmann, H. Chem. Ber. 1957, 90, 203. Czernecki, S.; Georgoulis, C.; Provelenghiou, C. Tetrahedron Lett. 1976, 17, 3535.
(11) Tom, N. J.; Simon, W. M.; Frost, H. N.; Ewing, M. Tetrahedron Lett. 2004, 45, 905.

SCHEME 2

SCHEME 3

SCHEME 4

SCHEME 5

protecting group of $\mathbf{1 6}$ was selectively removed from the amine in the presence of the ketal protecting group by using a two-step procedure: first, treatment of protected amine 16 with 2,6-lutidine and TBDMSOTf at $0{ }^{\circ} \mathrm{C}$ smoothly afforded the corresponding silyl carbamate, then exposure of the crude silyl carbamate to TBAF in THF at $0{ }^{\circ} \mathrm{C}$ afforded amine 18 in 96% yield for two steps Scheme 5). ${ }^{12}$

Next, alkylation of the primary amine of $\mathbf{1 8}$ was investigated (Scheme 6). A number of conditions were used in an effort to directly alkylate 18 with homoallyl bromide 20. Initially, Jung's protocols using CsOH/DMF ${ }^{13}$

[^3]
SCHEME 6

and $\mathrm{Cs}_{2} \mathrm{CO}_{3} / \mathrm{DMF}^{14}$ were tried but only starting material was recovered. Moreover, several attempts to alkylate amine 18 with homoallyl bromide 20 , using different bases $\left(\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{NaHCO}_{3}\right.$, DIPEA, ${ }^{n} \mathrm{BuLi}, \mathrm{NaH}$ or KH$)$ in a variety of solvents (DMF, DMSO, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, or THF), did not afford the secondary amine. Addition of a catalytic amount of ${ }^{n} \mathrm{Bu}_{4} \mathrm{NI}$ to activate electrophile 20 was not successful. If the reaction was done in neat bromide 20 at $80^{\circ} \mathrm{C}$, decomposition of the starting material 18 was observed. The recalcitrant nature of this amine toward alkylation was somewhat surprising since the model system gave low yields of the desired alkylated product due to over-alkylation. ${ }^{21}$

Due to these unforeseen alkylation problems, we turned to the acylation of amine 18 with 2-(tert-butyldi-methylsilyloxy)but-3-enic acid 21^{15} using EDCI in CH_{2} Cl_{2} that afforded the corresponding α-silyloxy amide (Scheme 7). Removal of the silyl protecting group gave the α-hydroxy amide $\mathbf{2 2}$, which was reduced with 6 equiv of LiAlH_{4} in refluxing THF affording amino alcohol 23 in 60% yield. Removal of the ketal protecting group from

[^4]
SCHEME 7

18

$23 X=\mathrm{H}_{2}$

SCHEME 8

23 with 3 N HCl provided a compound that upon silica gel chromatography gave vinyl oxazolidine 24 . The ${ }^{1} \mathrm{H}$ NMR clearly showed the resonances of the vinyl protons and ${ }^{13} \mathrm{C}$ NMR showed the characteristic signal of the quaternary carbon of the oxazolidine at 93.3 ppm in $\mathrm{C}_{6} \mathrm{D}_{6}$. Unfortunately, all attempts to rearrange vinyl oxazolidine 24 to the formyl pyrrolidine 25 by using several different protic and Lewis acids resulted in either no reaction or complex mixtures of unidentifiable compounds. ${ }^{16}$

Thus, the hydroxyl group of $\mathbf{2 2}$ was reacted with $\mathrm{Ag}_{2} \mathrm{O}$ in neat MeI to afford two diastereomers of compound $\mathbf{2 6}$ in 96% yield (Scheme 8). ${ }^{17}$ Attempts to convert 22 to 26 with $\mathrm{NaH} / \mathrm{MeI}$ in THF or $\mathrm{Ag}_{2} \mathrm{O} / \mathrm{MeI}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ resulted in isomerization of the double bond into conjugation with the amide as indicated by the resonances at 6.41 (quartet) and 1.91 ppm (doublet) in ${ }^{1} \mathrm{H}$ NMR of the crude product. The stereochemistry of a single diastereomer of $\mathbf{2 6}$ was determined by X-ray crystallographic structure analysis. ${ }^{6}$ The α-methoxy amide 26 was readily reduced with LiAlH_{4} in toluene to afford 27 in 97% yield. Attempted reduction of $\mathbf{2 6}$ with LiAlH_{4} in THF resulted in a complex mixture of compounds. The ketal group of amine 27 was removed with 3 N HCl to afford aminoketone 28. Next, the aminoketone 28 was subjected to the same reaction conditions that were used on the model system ${ }^{21}$ for

[^5]effecting the tandem aza-Cope/Mannich cyclization reaction. To our delight, treatment of amino ketone 28 with 1.2 equiv of $p-\mathrm{TsOH}$ in refluxing benzene afforded aldehyde 25 in 3 h as indicated by two resonances at 9.81 and 9.82 ppm in the ${ }^{1} \mathrm{H}$ NMR. Since aldehyde 25 was unstable to column chromatography, it was directly reduced with NaBH_{4} to afford the amino alcohol 29. Extensive NMR studies of the major and minor isomer of 29 including ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, DEPT, and difference nOe showed the desired tricyclic substructure was generated as a $2: 1$ mixture of diastereomers. The stereochemistry of the hydroxymethyl group on the pyrrolidine 29 was not discernible, so both isomers were advanced through the synthetic sequence independently. At a later stage in the synthesis, it was determined that the desired stereoisomer 29β was the minor isomer.

Efforts were then made to obtain predominantly pyrrolidine 29β. For example, ketene $\mathbf{3 0}$ was prepared via an oxidation of the major diastereomer of amino alcohol 29α with Jones' reagent to afford the corresponding amino acid (Scheme 9). The crude amino acid was converted to acid chloride with SOCl_{2} and reaction of the acid chloride with $\mathrm{Et}_{3} \mathrm{~N}^{18}$ in THF followed by addition of aq NaN_{3} at $0{ }^{\circ} \mathrm{C}$ afforded the corresponding acyl azide 31. Unfortunately, Curtius rearrangement of $\mathbf{3 1}$ and reduction of the resulting methyl carbamate with LiAlH_{4} gave a 1:1 diastereomeric mixture of diamine 32 in 18\% yield for the 6 steps.

Next, it was thought that the stereochemistry of aldehyde 25 could be controlled by the formation of an enamine that would be selectively protonated from one face then hydrolyzed to give a single stereoisomer of the aldehyde (Scheme 10). ${ }^{19}$ Indeed, addition of L-phenylalanine to aldehyde 25 resulted in a 1:2 mixture of diastereomers favoring the desired aldehyde $\mathbf{2 5} \beta$ in 71% combined yield for two steps (entry 2, Table 1). The addition of glycine resulted in no change in the stereoselectivity of $\mathbf{2 5}$ (entry 3). L-Proline was also tested and gave only an inseparable mixture of products (entry 4). Curiously, D-phenylalanine afforded a 1:1 mixture of $\mathbf{2 5} \alpha: \mathbf{2 5} \beta$ in 68% yield (entry 5). Addition of L- $N, N-$ dimethylphenylalanine had no effect on the stereochemistry, suggesting that enamine formation is essential for isomerization (entry 6). It is assumed that there is a conformational preorganization of the enamine, imparted by a hydrogen bond between the carboxylic acid and the tertiary amine, that results in a selective protonation from the α face of the enamine.

Next, aldehydes 25α and 25β were reduced with NaBH_{4} in $\mathrm{MeOH} / \mathrm{THF}$ to afford alcohol 29α and 29β (Scheme 11). The major and desired diastereomer, alcohol $\mathbf{2 9} \beta$, was readily separated from the minor diastereomer 29α by column chromatography. Oxidation of alcohol 29β with Jones' reagent afforded the amino acid 33β in a quantitative crude yield.
Treatment of amino acid 33β with $\mathrm{Et}_{3} \mathrm{~N}$ and ethyl chloroformate in acetone, followed by addition of aqueous NaN_{3}, afforded acyl azide $31 \beta .{ }^{20}$ The crude acyl azide was heated at $90^{\circ} \mathrm{C}$ in toluene for $\sim 45 \mathrm{~min}$ and the trans-

[^6]
SCHEME 9

SCHEME 10

TABLE 1. Isomerization of Aldehyde 25

entry	amine	ratio $(25 \beta: 25 \beta)^{a}$	yield, ${ }^{b} \%$
$\mathbf{1}$	none	$2: 1$	63
$\mathbf{2}$	L-phenylalanine	$\mathbf{1 : 2}$	$\mathbf{7 1}$
3	glycine	$2: 1$	72
4	L-proline		$-^{c}$
5	D-phenylalanine	$1: 1$	68
6	L- N, N-dimethyl phenylalanine	$2: 1$	68

${ }^{a}$ Isolated ratio. ${ }^{b}$ Combined yield for two steps. ${ }^{c}$ Complex mixtures.
formation of the acyl azide ($1714,2138 \mathrm{~cm}^{-1}$) to the isocyanate (1699, $2265 \mathrm{~cm}^{-1}$) was monitored by IR. Once the acyl azide stretch had disappeared, methanol was added to the reaction mixture to afford methylcarbamate $\mathbf{3 4} \beta$ in 78% yield for two steps. Carbamate $\mathbf{3 4} \beta$ was reacted with LiAlH_{4} in refluxing THF to provide diamine 32β in 82% yield. Removal of the benzyl protecting groups of diamine 32β with $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}$ in MeOH at 50 psi of hydrogen pressure afforded a diol that has been prepared previously by Ciufolini. ${ }^{2 c}$ Unfortunately, the solid compound that we obtained from this reaction was insoluble in CDCl_{3}, a solvent that was used by Ciufolini to characterize this compound. ${ }^{21}$ Therefore, the secondary amine of 32β was protected with a Boc group then removal of the benzyl protecting groups was accomplished with H_{2} and $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}$ in MeOH giving diol $\mathbf{3 5} \beta$ in 78% yield. The more accessible hydroxyl group of diol $\mathbf{3 5} \beta$ was selectively phosphorylated by using a two-step procedure. ${ }^{22}$ The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of phosphoric ester 36β were identical with a compound previously synthesized by Sorensen. ${ }^{2 b}$ Sorensen converted 36β to FR901483 using a two-step deprotection sequence (Scheme 12).

[^7]
Conclusions

In summary, we have demonstrated an efficient formal total synthesis of FR901483 in 2.5% overall yield in 18 steps from commercially available ketone 8 and the Bocprotected aminoaldehyde $\mathbf{9}$. An aldol condensation reaction between the zinc enolate of ketone $\mathbf{8}$ and Bocprotected α-amino aldehyde $\mathbf{9}$ afforded the desired amino alcohol 11 with $3.6: 1$ diastereoselectivity in 56% yield. The selectivity can be explained via a Cram chelation model. Interestingly, there are very few reports of diastereoselective aldol reactions for Boc-protected aminoaldehydes. Our strategy features a tandem aza-Cope/ Mannich reaction proceeding through a bridgehead iminium ion to rapidly construct the unique tricyclic core structure of FR901483. The tandem aza-Cope/Mannich reaction and subsequent epimerization of the aldehyde bearing carbon using L-phenylalanine afforded the desired amino aldehyde as a major product with 2:1 selectivity. Finally, the stereochemistry of the oxygen bearing stereocenters of FR901483 was controlled at the outset, without need for late-stage adjustments.

Experimental Section

General Comments. All reactions were carried out under nitrogen atmosphere. All commercially available compounds were used as received, unless otherwise specified. Tetrahydrofuran (THF), diethyl ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)$, and dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ were purified with alumina, using a solvent purification system. Toluene and diisopropylamine were freshly distilled from CaH_{2} prior to use. Flash chromatography was performed with silica gel ($32-63 \mathrm{~mm}$ particle size, 60 A pore size). An eluting solution used for the chromatographic purification of the amines $\mathbf{1 8}, \mathbf{2 7}, 29 \alpha, 29 \beta, 32 \beta, \mathbf{3 4} \beta$, and $\mathbf{3 6} \beta$ was prepared by adding 480 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 20 \mathrm{~mL}$ of MeOH , and 20 mL of commercial $28-30 \% \quad \mathrm{NH}_{4} \mathrm{OH}$ into a separatory funnel. The mixture was shaken and allowed to stand for 20 min . The aqueous phase was separated, and the organic phase was used without further manipulations. All ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra were obtained on a $300-\mathrm{MHz}$ spectrometer, and chemical shifts (δ) are reported relative to residual solvent peaks of CHCl_{3} or $\mathrm{C}_{6} \mathrm{H}_{6}$. EI mass spectrometry was performed on a micromass spectrometer. Melting points are uncorrected.
[2-Hydroxy-1-(4-methoxybenzyl)-2-(8-oxo-1,4-dioxa-spiro[4.5]dec-7-yl)ethyl]carbamic Acid tert-Butyl Ester (11). Li enolate: To a solution of diisopropylamine (1.68 mL , 12.0 mmol) in THF (100 mL) was added $n-\mathrm{BuLi}(7.50 \mathrm{~mL}$ of a 1.6 M solution in hexanes, 12.0 mmol) at $-78^{\circ} \mathrm{C}$. This solution was stirred for 15 min at $-78{ }^{\circ} \mathrm{C}$, then cyclohexanedione monoketal $8(1.25 \mathrm{~g}, 8.00 \mathrm{mmol})$ in THF $(50 \mathrm{~mL})$ was added dropwise over $10 \mathrm{~min} \mathrm{at}-78^{\circ} \mathrm{C}$. The mixture was maintained at this temperature for 10 min , then freshly prepared amino

SCHEME 11

SCHEME 12

aldehyde $\mathbf{9}^{23}(2.23 \mathrm{~g}, 8.00 \mathrm{mmol})$ in THF (30 mL) was added. The resulting solution was stirred for 20 min at $-78^{\circ} \mathrm{C}$, then saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added at that temperature. The aqueous layer was separated then extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times$ $50 \mathrm{~mL})$. The combined organic phases were washed with brine (30 mL), dried with MgSO_{4}, and concentrated in vacuo. The crude material was purified by flash column chromatography over silica gel eluting with 20:80 ethyl acetate:hexanes to give hydroxyl ketone 11 ($1.45 \mathrm{~g}, 42 \%$) along with 1.21 g of an inseparable mixture of presumed diastereomers.

Zn enolate: To diisopropylamine ($0.375 \mathrm{~mL}, 2.67 \mathrm{mmol}$) in THF (20 mL) was added $n-\mathrm{BuLi}(1.67 \mathrm{~mL}$ of a 1.6 M solution in hexanes, 2.67 mmol) at $-78{ }^{\circ} \mathrm{C}$. This solution was stirred for 15 min at $-78{ }^{\circ} \mathrm{C}$, then cyclohexanedione monoketal 8 ($0.380 \mathrm{~g}, 2.43 \mathrm{mmol}$) in THF (10 mL) was added dropwise over 10 min at $-78{ }^{\circ} \mathrm{C}$. The mixture was maintained at this temperature for 30 min , then $\mathrm{ZnCl}_{2}(4.87 \mathrm{~mL}$ of a 0.5 M solution in THF, 2.43 mmol) was added. The reaction was held at $-78{ }^{\circ} \mathrm{C}$ for 30 min to ensure transmetalation, then amino aldehyde $9(0.679 \mathrm{~g}, 2.43 \mathrm{mmol})$ in THF $(30 \mathrm{~mL})$ was added. The solution was stirred for 20 min at $-78^{\circ} \mathrm{C}$, then a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added at that temperature. The aqueous layer was separated then extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic phases were washed with brine (10 mL), dried with MgSO_{4}, and concentrated in vacuo. The crude material was purified by a flash column chromatography over silica gel eluting with 20:80 ethyl acetate:hexanes to give ketone $11(0.596 \mathrm{~g}, 56 \%)$ along with 0.165 g of an inseparable mixture of presumed diastereomers (16%).

Mp $120{ }^{\circ} \mathrm{C}$; $[\alpha]^{25}{ }^{\mathrm{D}}-60.41$ (c $0.058, \mathrm{CHCl}_{3}$); IR (film) 3507, $3382,2974,1704,1513,1246 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.11$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{~d}, ~ J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.12(\mathrm{~d}, J$ $=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.03-3.72(\mathrm{~m}, 7 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 2.80(\mathrm{~d}, ~ J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 2.75-2.58 (m, 2H), 2.36-2.21 (m, 2H), 2.00-1.89 $(\mathrm{m}, 2 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 215.1,158.1$, $155.7,130.5,130.3,113.9,106.8,79.1,77.5,70.6,64.9,64.4$,

[^8]$55.2,51.8,49.3,39.1,37.9,35.4,34.9,28.4 ; \mathrm{MS}(\mathrm{m} / \mathrm{z}) 436,417$, 399, 362, 240, 213, 197, 150, 121, 99, 86, 57; EI-HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{NO}_{7}[\mathrm{M}+\mathrm{H}]^{+}(\mathrm{m} / z) 436.2338$, found 436.2335.
[2-Hydroxy-2-(8-hydroxy-1,4-dioxaspiro[4.5]dec-7-yl)-1-(4-methoxybenzyl)ethyl]carbamic Acid tert-Butyl Ester (14). $\mathrm{NaBH}_{4}(195 \mathrm{mg}, 5.17 \mathrm{mmol})$ was placed in a flask, followed by $\mathrm{MeOH}(20 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The mixture was stirred at that temperature for 10 min . Next, ketone $11(1.45 \mathrm{~g}, 3.33$ mmol) in THF (50 mL) was cannulated into this mixture over 15 min at $-78^{\circ} \mathrm{C}$. The reaction was held at this temperature for an additional 10 min , then warmed to room temperature. After 20 min at room temperature, ice water was added to the reaction and stirring was continued for an additional 30 min . The aqueous layer was separated and extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3 $\times 30 \mathrm{~mL})$. The combined organic phases were washed with water $(2 \times 10 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$, dried with MgSO_{4}, and concentrated in vacuo. The crude residue was purified by flash column chromatography over silica gel eluting with 50:50 ethyl acetate:hexanes to give diol 14 ($1.33 \mathrm{~g}, 91 \%$) as a single diastereomer.

Mp $160{ }^{\circ} \mathrm{C} ;[\alpha]^{25}{ }_{\mathrm{D}}-30.40$ (c $0.015, \mathrm{CHCl}_{3}$); IR (film) 3382 (br), 2963, 1683, 1513, $1247 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.16$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 6.82 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 5.01 (d, J $=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~s}, 1 \mathrm{H}), 3.98-3.80(\mathrm{~m}, 5 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H})$, $3.70-3.55(\mathrm{~m}, 1 \mathrm{H}), 3.53(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.89-2.76(\mathrm{~m}$, $3 \mathrm{H}), 1.97-1.50(\mathrm{~m}, 7 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 158.4,156.1,131.0,130.6,114.2,108.1,79.4,77.5$, $75.9,64.7,64.4,55.5,52.9,43.1,38.0,34.2,33.5,33.2,28.6$; MS (m / z) 436, 377, 359, 329, 315, 275, 91; EI-HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{35} \mathrm{NO}_{7}[\mathrm{M}-\mathrm{H}]^{+}(\mathrm{m} / z)$ 436.2335, found 436.2329.
[2-Benzyloxy-2-(8-benzyloxy-1,4-dioxaspiro[4.5]dec-7-yl)-1-(4-methoxybenzyl)ethyl]carbamic Acid tert-Butyl Ester (16). To diol 14 ($468 \mathrm{mg}, 1.07 \mathrm{mmol}$) in benzyl bromide (6 mL) was added $n-\mathrm{Bu}_{4} \mathrm{NI}(39 \mathrm{mg}, 0.11 \mathrm{mmol})$ at room temperature. After $20 \mathrm{~min}, \mathrm{Ag}_{2} \mathrm{O}(990 \mathrm{mg}, 4.28 \mathrm{mmol})$ was added in a single portion and the reaction was stirred for 12 h at room temperature. The mixture was filtered through Celite and the filter cake was washed with $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$. The filtrate was concentrated in vacuo and the residue was purified by flash column chromatography over silica gel eluting with hexanes and 20:80 ethyl acetate:hexanes to give dibenzyl ether 16 ($470 \mathrm{mg}, 71 \%$) as a colorless oil.
$[\alpha]^{25}{ }_{\mathrm{D}}+22.38$ (c 0.048, CHCl_{3}); IR (film) 3457, 2934, 1709, $1512,1247 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.20-7.00$ (m, $10 \mathrm{H}), 6.85(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.55(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.18$ (d, $J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.35-4.25(\mathrm{~m}$, $1 \mathrm{H}), 4.15$ (d, $J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.14$ (d, $J=11.6 \mathrm{~Hz}, 1 \mathrm{H}$), $3.98-$ $3.96(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.50-3.41(\mathrm{~m}, 4 \mathrm{H})$, $3.40-3.30(\mathrm{~m}, 1 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H}), 2.88-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.72-2.51$ $(\mathrm{m}, 2 \mathrm{H}), 2.23-2.14(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.60(\mathrm{~m}$, $2 \mathrm{H}), 1.55-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 158.7,155.4,139.9,139.1,131.1,130.7,128.6,128.5,127.6$, $127.3,114.2,109.0,78.8,77.2,76.3,71.5,70.4,64.4,54.7,52.3$, 41.9, 40.7, 33.6, 33.0, 28.7, 28.6; MS (m/z) 617, 544, 518, 496, 396, 334, 121, 91; EI-HRMS calcd for $\mathrm{C}_{37} \mathrm{H}_{47} \mathrm{NO}_{7}[\mathrm{M}]^{+}(\mathrm{m} / \mathrm{z})$ 617.3352, found 617.3332.

2-Benzyloxy-2-(8-benzyloxy-1,4-dioxaspiro[4.5]dec-7-yl)-1-(4-methoxybenzyl)ethylamine (18). To dibenzyl ether $16(900 \mathrm{mg}, 1.46 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (50 mL) was added 2,6lutidine ($0.51 \mathrm{~mL}, 4.4 \mathrm{mmol}$), then TBDMSOTf $(0.670 \mathrm{~mL}, 2.92$ mmol) at $0{ }^{\circ} \mathrm{C}$. The reaction was allowed to warm to room temperature and after 2 h a 0.5 N HCl solution $(10 \mathrm{~mL})$ was added. The organic layer was separated and the aqueous layer
was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined organic phases were washed with water $(1 \times 20 \mathrm{~mL})$ and brine ($1 \times$ 20 mL), dried with MgSO_{4}, and concentrated in vacuo. The crude residue was dissolved in THF (100 mL) and cooled to 0 ${ }^{\circ} \mathrm{C}$, then TBAF $(4.37 \mathrm{~mL}$ of a 1.0 M in THF solution, 4.37 mmol) was added. After 10 min , saturated $\mathrm{NH}_{4} \mathrm{Cl}$ was added and the resulting solution was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30$ mL). The combined organic phases were washed with brine $(20 \mathrm{~mL})$, dried with MgSO_{4} and concentrated in vacuo. The crude residue was purified by a flash chromatography over silica gel eluting with 50:50 ethyl acetate:hexanes and a solution of $\mathrm{NH}_{4} \mathrm{OH} / \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (see general comments) to give amine 18 ($725 \mathrm{mg}, 96 \%$) as a colorless oil.
$[\alpha]^{25}{ }_{\mathrm{D}}+39.32\left(c 0.053, \mathrm{CHCl}_{3}\right.$); IR (film) 3200 (br), $2960 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39-7.26$ (m, 10 H), 6.93 (d, J $=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.74(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.68(\mathrm{~d}, J=11.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.64(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.35$ (d, $J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 4 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.67-3.52(\mathrm{~m}$, 2 H), $3.32-3.24(\mathrm{~m}, 1 \mathrm{H}), 2.84$ (dd, $J=4.4,13.3 \mathrm{~Hz}, 1 \mathrm{H}$), $2.50-$ $2.40(\mathrm{~m}, 2 \mathrm{H}), 2.19-2.14(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.91-$ $1.79(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.50(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $158.0,139.1,139.0,131.6,130.3,128.5,128.4,127.8,127.7$, $127.6,127.5,113.9,108.7,82.4,73.6,70.5,64.5,64.4,55.3,54.5$, 41.9, 41.6, 35.3, 32.4, 27.8; MS (m/z) 518, 484, 396, 290, 247, 150, 91; EI-HRMS calcd for $\mathrm{C}_{32} \mathrm{H}_{39} \mathrm{NO}_{5}[\mathrm{M}]^{+}(\mathrm{m} / \mathrm{z}) 517.2828$, found 517.2877.

2-Hydroxybut-3-enoic Acid [2-Benzyloxy-2-(8-benz-yloxy-1,4-dioxaspiro[4.5]dec-7-yl)-1-(4-methoxybenzyl)ethyl]amide (22). To amine $18(580 \mathrm{mg}, 1.12 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (50 mL) was added EDCI (1-[3-(dimethylamino)propyl]-3ethylcarbodiimide hydrochloride, $645 \mathrm{mg}, 3.36 \mathrm{mmol}$) then acid $21(730 \mathrm{mg}, 3.36 \mathrm{mmol})$ at room temperature. The reaction was stirred for 3 h at room temperature, then 0.5 N HCl was added (20 mL). The organic layer was separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined organic phases were washed with water $(20 \mathrm{~mL})$ and brine (20 mL), dried with MgSO_{4}, and concentrated in vacuo. The crude residue was immediately dissolved in THF (50 mL) and cooled to $0{ }^{\circ} \mathrm{C}$. Next, TBAF (3.36 mL of a 1.0 M in THF solution, 3.36 mmol) was added and the reaction was maintained at $0{ }^{\circ} \mathrm{C}$. After 30 min , saturated $\mathrm{NH}_{4} \mathrm{Cl}$ was added then the aqueous phase was separated and extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3 $\times 30 \mathrm{~mL}$). The combined organic phases were washed with brine (20 mL), dried with MgSO_{4}, and concentrated in vacuo. The crude residue was purified by a flash column chromatography over silica gel eluting with 50:50 ethyl acetate:hexanes to give amide 22 ($560 \mathrm{mg}, 83 \%$ as a $1: 1$ mixture of diastereomers) as a colorless oil.

IR (film) 3407(br), 2932, 1655, 1512, $1247 \mathrm{~cm}^{-1}$. Isomer 1: $[\alpha]^{25}{ }_{\mathrm{D}}+18.72\left(c \quad 0.033, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.45-7.20(\mathrm{~m}, 8 \mathrm{H}), 7.13(\mathrm{~m}, 2 \mathrm{H}), 6.95-6.86(\mathrm{~m}, 1 \mathrm{H}), 6.85(\mathrm{~d}$, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.62(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.94-5.84(\mathrm{~m}, 1 \mathrm{H})$, 5.42 (d, $J=17.1 \mathrm{~Hz}, 1 \mathrm{H}$), 5.28 (d, $J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.68$ (d, $J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.47-4.41(\mathrm{~m}, 2 \mathrm{H}), 4.32(\mathrm{~d}, J=11.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.33-4.22(\mathrm{~m}, 1 \mathrm{H}), 3.97-3.85(\mathrm{~m}, 6 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.55-$ 3.30 (br s, 1H), 3.27-3.18 (m, 1H), 2.75-2.61 (m, 2H), 2.41$2.31(\mathrm{~m}, 1 \mathrm{H}), 2.14-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.75-$ $1.67(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.25(\mathrm{~m}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.6,158.4,139.2,138.6,136.3,130.6$, $130.3,128.8,128.5,128.4,128.1,127.5,118.0,114.1,108.6$, $76.8,75.7,73.5,71.8,70.5,64.6,55.3,51.0,41.7,39.7,33.4$, 32.5, 28.2. Isomer 2: $[\alpha]^{25} \mathrm{D}+22.26\left(c 0.027, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45-7.20(\mathrm{~m}, 8 \mathrm{H}), 7.13(\mathrm{~m}, 2 \mathrm{H}), 6.90-$ $6.86(\mathrm{~m}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.62(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 5.93-5.84(\mathrm{~m}, 1 \mathrm{H}), 5.42(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J$ $=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.52-4.41(\mathrm{~m}, 2 \mathrm{H})$, $4.32(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.30-4.20(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 4 \mathrm{H})$, $4.00-3.86(\mathrm{~m}, 2 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.30-3.18(\mathrm{~m}, 1 \mathrm{H}), 2.77-2.57$ $(\mathrm{m}, 2 \mathrm{H}), 2.52-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.14-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.80(\mathrm{~m}$, $1 \mathrm{H}), 1.78-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.22(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 170.7,158.4,139.2,138.6,136.4,130.6,130.3,128.8$, $128.6,128.4,128.1,127.5,118.1,114.1,108.7,77.6,76.7,75.4$,
$73.4,71.6,70.5,64.6,55.3,51.0,41.6,39.6,33.5,32.5,28.2$; MS (m / z) 602, 544, 480, 409, 253, 234,181, 150, 139, 121; EIHRMS calcd for $\mathrm{C}_{36} \mathrm{H}_{43} \mathrm{NO}_{7}[\mathrm{M}+\mathrm{H}]^{+}(\mathrm{m} / \mathrm{z})$ 602.3118, found 602.3106 .

7,9-Bisbenzyloxy-6-(4-methoxybenzyl)-3-vinyl-2-oxa-5azatricyclo[6.3.1.0 ${ }^{1,5}$]dodecane (24). To $\mathrm{LiAlH}_{4}(97 \mathrm{mg}, 2.6$ mmol) in THF (10 mL) was cannulated amide $22(256 \mathrm{mg}$, 0.426 mmol) in THF (10 mL) over 5 min at $0^{\circ} \mathrm{C}$. The reaction was refluxed for 12 h , then cooled to room temperature. Next, water (0.2 mL) was added followed by MgSO_{4} and the resulting mixture was filtered through Celite. The filtrate was concentrated in vacuo to give amine 23 ($150 \mathrm{mg}, 60 \%$). To amine 23 ($90 \mathrm{mg}, 0.15 \mathrm{mmol}$) in THF (5 mL) was added $3 \mathrm{~N} \mathrm{HCl}(5 \mathrm{~mL})$ at room temperature. After the reaction was stirred for $5 \mathrm{~h}, 1$ $\mathrm{N} \mathrm{NaOH}(16 \mathrm{~mL})$ was added, the organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic phases were washed with brine (10 mL), dried with MgSO_{4}, and concentrated in vacuo. The crude residue was purified by flash column chromatography over silica gel eluting with 50:50 ethyl acetate:hexanes and ethyl acetate to give vinyl oxazolidine $\mathbf{2 4}$ ($66 \mathrm{mg}, 82 \%$) as a colorless oil and a 1:1 mixture of diastereomers. (Data for the isomer with a lower R_{f} are shown below.)

IR (film) 2925, 1512, 1246, $1092 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.43-7.10(\mathrm{~m}, 12 \mathrm{H}), 6.86(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.11$, (ddd, $J=17.1,10.2,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.27$ (d, $J=17.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.07 (d, $J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.55-4.45(\mathrm{~m}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=11.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.33$ (d, $J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H})$, 4.03 (d, $J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.78-3.68(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{t}, J=8.5$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.41 (s, 3H), 3.16 (dd, $J=13.0,9.4 \mathrm{~Hz}, 1 \mathrm{H}$), $3.12-$ $3.04(\mathrm{~m}, 2 \mathrm{H}), 2.97(\mathrm{~m}, 1 \mathrm{H}), 2.88(\mathrm{dd}, J=8.8,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.73$ (m, 1H), 2.38-2.25 (m, 2H), 2.18-2.02 (m, 2H); ${ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 158.8,140.4,139.6,139.3,131.8,130.4,127.5$, $115.1,114.3,92.7,77.9,76.3,74.6,71.2,70.5,60.0,54.9,52.2$, 39.4, 35.8, 30.2, 27.4, 24.9; MS (m/z) 526, 404, 376, 312, 192, 121, 91; EI-HRMS calcd for $\mathrm{C}_{34} \mathrm{H}_{39} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+}(\mathrm{m} / \mathrm{z})$ 526.2957, found 526.2934.

2-Methoxybut-3-enoic Acid [2-Benzyloxy-2-(8-benz-yloxy-1,4-dioxaspiro[4.5]dec-7-yl)-1-(4-methoxybenzyl)ethyl]amide (26). To amide $22(713 \mathrm{mg}, 1.19 \mathrm{mmol})$ in MeI (10 mL) was added $\mathrm{CaSO}_{4}(800 \mathrm{mg}, 5.88 \mathrm{mmol})$, then $\mathrm{Ag}_{2} \mathrm{O}(550$ $\mathrm{mg}, 2.37 \mathrm{mmol}$) in a single portion. The reaction was stirred for 12 h at room temperature then filtered through Celite. The filter cake was washed with $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ and the filtrate was concentrated in vacuo to give methoxy amide $\mathbf{2 6}$ ($700 \mathrm{mg}, 96 \%$) as a white solid. The white solid was purified by flash column chromatography over silica gel eluting with 50:50 ethyl acetate:hexanes.

IR (KBr) 3426, 2939, 1668, 1506, $1248 \mathrm{~cm}^{-1}$. Isomer 1: mp $142{ }^{\circ} \mathrm{C}$; $[\alpha]^{25} \mathrm{D}+32.30\left(c 0.020, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.43-7.25(\mathrm{~m}, 7 \mathrm{H}), 7.20-7.13(\mathrm{~m}, 3 \mathrm{H}), 6.86(\mathrm{~d}, \mathrm{~J}=$ $8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 6.62 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), $5.91-5.79$ (ddd, $J=$ $17.2,10.4,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{~d}, J=$ $10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.72$ (d, $J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.46$ (d, $J=11.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.36-4.25(\mathrm{~m}, 2 \mathrm{H}), 4.10(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~d}, J=$ $4.0 \mathrm{~Hz}, 1 \mathrm{H}$), $3.94-3.85(\mathrm{~m}, 6 \mathrm{H}), 3.61$ (s, 3 H), 3.38 ($\mathrm{s}, 3 \mathrm{H}$), $3.24-$ $3.17(\mathrm{~m}, 1 \mathrm{H}), 2.81-2.64(\mathrm{~m}, 2 \mathrm{H}), 2.44-2.34(\mathrm{~m}, 1 \mathrm{H}), 2.15-$ $2.03(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.65-$ $1.45(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.28(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 169.3, 158.4, 139.4, 138.8, 133.6, 130.7, 130.5, 128.8, 128.6, 128.4, 128.1, 127.5, 127.4, 118.7, 114.1, 108.7, 83.4, 76.8, 75.3, $71.4,70.4,64.6,64.5,57.7,55.3,50.4,41.5,39.7,33.4,32.7$, 28.4. Isomer 2: $[\alpha]^{25} \mathrm{D}+22.58\left(c 0.012, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50-7.23(\mathrm{~m}, 7 \mathrm{H}), 7.22-7.13(\mathrm{~m}, 3 \mathrm{H}), 6.86$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 6.62 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), $5.81-5.69$ (ddd, $J=17.2,10.3,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~d}$, $J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=11.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.39-4.25(\mathrm{~m}, 1 \mathrm{H}), 4.07$ (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~d}, J=11.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.92-3.91(\mathrm{~m}, 4 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H}), 3.38-3.25$ (m, 1H), 2.76-2.61 (m, 2H), 2.48-2.37 (m, 1H), 2.18-2.05 (m, $1 \mathrm{H}), 1.97-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.40(\mathrm{~m}, 4 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 169.5, 158.1, 139.1, 138.6, 133.8, $130.5,130.3,128.6,128.3,128.2,127.9,127.3,118.6,113.8$, $108.5,83.3,76.5,75.3,71.3,70.3,64.4,57.8,55.1,50.2,41.4$, $39.5,33.2,32.3,28.0$; MS $(\mathrm{m} / \mathrm{z}) 616,544,494,409,253,181$, 121, 91, 71; EI-HRMS calcd for $\mathrm{C}_{37} \mathrm{H}_{45} \mathrm{NO}_{7}[\mathrm{M}+\mathrm{H}]^{+}(\mathrm{m} / \mathrm{z})$ 616.3274, found 616.3291.
[2-Benzyloxy-2-(8-benzyloxy-1,4-dioxaspiro[4.5]dec-7-yl)-1-(4-methoxybenzyl)ethyl](2-methoxybut-3-enyl)amine (27). To amide 26 ($525 \mathrm{mg}, 0.854 \mathrm{mmol}$) in freshly distilled toluene (20 mL) was added $\mathrm{LiAlH}_{4}(195 \mathrm{mg}, 2.56$ mmol) in one portion at room temperature. The suspension was heated at $80^{\circ} \mathrm{C}$ for 2 h and cooled to room temperature, then water was added dropwise until a white solid precipitated. To this mixture was added MgSO_{4} then it was filtered through Celite. The filter cake was washed with $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ and the filtrate was concentrated in vacuo. The crude residue was purified by flash column chromatography over silica gel eluting first with 50:50 ethyl acetate:hexanes then a solution of $\mathrm{NH}_{4} \mathrm{OH} / \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (see general comments) to give amine 27 ($497 \mathrm{mg}, 97 \%$) as a colorless oil.

IR (film) $3345,2960 \mathrm{~cm}^{-1}$. Isomer 1: $[\alpha]^{25}{ }_{\mathrm{D}}+57.32(c 0.042$, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43-7.18(\mathrm{~m}, 10 \mathrm{H}), 6.93$ $(\mathrm{d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.68(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.76-5.64(\mathrm{~m}$, $1 \mathrm{H}), 5.23(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.63$ (d, $J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=$ $11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 4 \mathrm{H}), 3.71(\mathrm{~s}$, 3 H), 3.64-3.45 (m, 3H), $3.20(\mathrm{~s}, 3 \mathrm{H}), 3.13-3.05(\mathrm{~m}, 1 \mathrm{H}), 2.81-$ $2.70(\mathrm{~m}, 3 \mathrm{H}), 2.65(\mathrm{dd}, J=12.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.47-2.35(\mathrm{~m}$, $1 \mathrm{H}), 2.18-2.07(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.75(\mathrm{~m}, 1 \mathrm{H})$, $1.69-1.50(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.8$, 139.4, 139.1, 137.6, 132.1, 130.4, 128.4, 128.3, 127.8, 127.7, 127.5, $127.4,117.9,113.8,108.9,83.0,80.4,77.5,77.0,72.8,70.4,64.4$, $61.4,56.3,55.2,52.6,41.5,37.3,35.3,32.6,28.0$. Isomer 2: $[\alpha]^{25} \mathrm{D}+60.70$ (c 0.023, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.43-7.20(\mathrm{~m}, 10 \mathrm{H}), 6.93(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.70(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 5.76-5.64(\mathrm{~m}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~d}$, $J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=11.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.94(\mathrm{~s}, 4 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.72-3.61(\mathrm{~m}, 2 \mathrm{H}), 3.54-3.46(\mathrm{~m}$, 1 H), 3.29 (s, 3H), 3.13-3.05 (m, 1H), 2.90 (dd, $J=11.8,7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.85-2.72(\mathrm{~m}, 2 \mathrm{H}), 2.61(\mathrm{dd}, J=11.8,4.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.53-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $2 \mathrm{H}), 1.87-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.53(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 158.1,139.6,139.4,137.7,132.4,130.5,128.6,128.5$, $128.1,127.9,127.7,127.5,118.0,114.0,109.1,83.2,80.0,77.1$, $77.0,72.9,70.5,64.6,64.5,61.2,56.6,55.4,52.8,41.8,37.3$, 35.3, 32.7, 28.1; MS (m/z) 602, 570, 530, 480, 234, 139, 121, 91; EI-HRMS calcd for $\mathrm{C}_{37} \mathrm{H}_{47} \mathrm{NO}_{6}[\mathrm{M}+\mathrm{H}]^{+}(\mathrm{m} / \mathrm{z})$ 602.3482, found 602.3508 .

4-Benzyloxy-3-[1-benzyloxy-2-(2-methoxybut-3-enylami-no)-3-(4-methoxyphenyl)propyl]cyclohexanone (28). To amine $27(497 \mathrm{mg}, 0.827 \mathrm{mmol})$ in THF (10 mL) was added 3 $\mathrm{N} \mathrm{HCl}(10 \mathrm{~mL})$ at room temperature and the reaction was stirred for 12 h . The resulting solution was carefully quenched with saturated NaHCO_{3} solution and extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3 $\times 30 \mathrm{~mL})$. The combined organic phases were washed with brine (20 mL), dried with MgSO_{4}, and concentrated in vacuo. The crude residue was purified by flash column chromatography over silica gel eluting with 20:80 ethyl acetate:hexanes, 50:50 ethyl acetate:hexanes, and ethyl acetate to give ketoamine $28(414 \mathrm{mg}, 90 \%)$ as a $1: 1$ mixture of diastereomers.

IR (film) 3339, 2932, $1713 \mathrm{~cm}^{-1}$. Isomer 1: ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40-7.25(\mathrm{~m}, 10 \mathrm{H}), 6.98(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, 6.77 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.68-5.57(\mathrm{~m}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=15.7$ $\mathrm{Hz}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H}), 4.53(\mathrm{~d}, J=$ $11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.93-3.85(\mathrm{~m}, 1 \mathrm{H})$, $3.75(\mathrm{~s}, 3 \mathrm{H}), 3.58-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.46(\mathrm{t}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.17$ $(\mathrm{s}, 3 \mathrm{H}), 3.05-2.95(\mathrm{~m}, 1 \mathrm{H}), 280-2.45(\mathrm{~m}, 9 \mathrm{H}), 2.32-2.13(\mathrm{~m}$, $2 \mathrm{H}), 2.05-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.62(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 211.5,158.1,138.6,138.5,137.2,131.4,130.2,128.5$, $128.0,127.7,118.2,114.0,82.7,81.2,74.1,73.7,70.5,61.4,56.3$, $55.3,52.5,43.3,41.2,37.0,36.9,27.7$. Isomer 2: $[\alpha]^{25}{ }_{\mathrm{D}}+47.50$
(c 0.014, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50-7.34$ (m, 10 H), 7.07 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 6.86 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), $5.79-$ $5.67(\mathrm{~m}, 17.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~d}, J=$ $15.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~s}, 2 \mathrm{H}), 4.63(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}$, $J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.20-3.95(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.73-3.63$ $(\mathrm{m}, 1 \mathrm{H}), 3.57(\mathrm{t}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.15-3.07(\mathrm{~m}$, 1 H), 2.94-2.55 (m, 9H), 2.42-2.22(m, 2 H$), 2.10-1.97(\mathrm{~m}, 1 \mathrm{H})$, $1.97-1.75(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 211.3, 158.1, 138.6, 137.2, 131.4, 130.2, 128.5, 128.0, 127.7, 118.0, 114.0, 82.8, 80.7, 77.0, 74.1, 73.5, 70.5, 61.2, 56.4, 55.3, 52.6, 43.4, 41.1, 37.0, 36.8, 27.7; MS (m/z) 558, 526, 436, 234, 121, 91, 71; EI-HRMS calcd for $\mathrm{C}_{35} \mathrm{H}_{43} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}(\mathrm{m} / \mathrm{z})$ 558.3219, found 558.3229 .
[7,9-Bisbenzyloxy-6-(4-methoxybenzyl)-5-azatricyclo-[6.3.1.01,5]dodec-3-yl]methanol (29). A flask equipped with a Dean Stark apparatus was charged with ketoamine 28 (230 $\mathrm{mg}, 0.413 \mathrm{mmol})$, benzene (20 mL), then $p-\mathrm{TsOH}(94 \mathrm{mg}, 0.50$ $\mathrm{mmol})$ in a single portion. The solution was slowly heated to reflux over 30 min then maintained at that temperature for 3 h. Next, the solution was cooled to room temperature and saturated NaHCO_{3} was added. The organic layer was separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15$ mL). The combined organic phases were washed with water $(10 \mathrm{~mL})$ and brine (10 mL), dried with MgSO_{4}, and concentrated in vacuo. The crude residue was dissolved in THF (20 mL) then cannulated into $\mathrm{NaBH}_{4}(30 \mathrm{mg}, 0.79 \mathrm{mmol})$ in MeOH $(10 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ over 10 min . The resulting solution was allowed to warm to room temperature. At room temperature, ice water $(10 \mathrm{~mL})$ was added to the reaction and the aqueous layer was separated and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic phases were washed with water $(10 \mathrm{~mL})$ and brine (10 mL), dried with MgSO_{4}, and concentrated in vacuo. The crude residue was purified by flash chromatography over silica gel eluting with a solution of $\mathrm{NH}_{4} \mathrm{OH} / \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (see general comments) to give amino alcohol 29 (major 29 2 : 91 $\mathrm{mg}, 42 \%$; minor $\mathbf{2 9} \beta$: $41 \mathrm{mg}, 21 \%$).

In situ epimerization with l-phenylalanine: A flask equipped with a Dean Stark apparatus was charged with ketoamine $28(20 \mathrm{mg}, 0.036 \mathrm{mmol})$, benzene $(20 \mathrm{~mL})$, then $p-\mathrm{TsOH}(8 \mathrm{mg}, 0.04 \mathrm{mmol})$ in a single portion. The reaction was heated to reflux for 3 h . Upon complete consumption of ketoamine 28 by TLC, L-phenylalanine ($6 \mathrm{mg}, 0.04 \mathrm{mmol}$) was added and the solution was refluxed for an additional 2 h . The reaction was cooled to room temperature and quenched with saturated NaHCO_{3}. The organic phase was separated and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic phases were washed with water (5 mL) and brine (5 mL), dried with MgSO_{4}, and concentrated in vacuo. The crude residue was dissolved in THF (5 mL) then cannulated into a solution of $\mathrm{NaBH}_{4}(10 \mathrm{mg}, 0.26 \mathrm{mmol})$ in MeOH $(0.2 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. The resulting solution was allowed to warm to room temperature. At room temperature, ice water (5 mL) was added and the aqueous layer was separated and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic phases were washed with water $(10 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$, dried with MgSO_{4} and concentrated in vacuo. The crude residue was purified by flash chromatography over silica gel eluting with a solution of $\mathrm{NH}_{4} \mathrm{OH} / \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (see general comments) to give amino alcohol 29 (minor 29 α : 4.3 mg ; major 29 β : 9.0 mg).

IR (film) $3396,2928 \mathrm{~cm}^{-1}$. Isomer $1(\mathbf{2 9 \alpha}):[\alpha]^{25}{ }_{\mathrm{D}}+73.84$ (c $0.058, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42-7.24$ (m, 10 H), 7.07 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), $6.82(\mathrm{~d}, ~ J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.46$ (d, $J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~s}, 2 \mathrm{H}), 4.16(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.81(\mathrm{~s}, 3 \mathrm{H}), 3.67$ (dd, $J=9.9,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.56$ (dd, $J=15.8$, $5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.37-3.25(\mathrm{~m}, 2 \mathrm{H}), 3.17$ (br s, 1H), 3.08 (dd, $J=$ $9.3,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.99-2.80(\mathrm{~m}, 4 \mathrm{H}), 2.50(\mathrm{~s}, 1 \mathrm{H}), 2.33(\mathrm{br} \mathrm{s}$, 1 H), 2.03-1.77 (m, 5H), 1.70 (dd, $J=12.2,9.4 \mathrm{~Hz}, 1 \mathrm{H}$), $1.60-$ $1.48(\mathrm{~m}, 1 \mathrm{H}), 1.47(\mathrm{dd}, J=12.2,6.8 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.1,139.3,139.2,131.9,130.5,128.7,127.8$, $127.7,114.0,77.6,75.7,74.9,71.4,70.5,67.8,64.1,60.8,59.4$, $55.5,54.6,51.8,43.3,36.7,36.6,36.0,27.8,27.5$. Isomer 2
(29 $)$: $[\alpha]^{25}{ }_{\mathrm{D}}+42.52\left(c 0.050, \mathrm{CHCl}_{3}\right.$); ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.42-7.24(\mathrm{~m}, 10 \mathrm{H}), 7.07(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.80$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}$), $4.54(\mathrm{~d}, ~ J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=$ $12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.16$ (d, $J=11.6 \mathrm{~Hz}$,$1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{dd}, J=9.8,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.57-3.43$ (m, 3 H), 3.33 (br s, 1 H), 3.07 (dd, $J=12.9,10.3 \mathrm{~Hz}, 1 \mathrm{H}$), $2.96-$ $2.89(\mathrm{~m}, 2 \mathrm{H}), 2.84(\mathrm{dd}, J=13.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{~s}, 1 \mathrm{H}), 2.25$ $(\mathrm{m}, 1 \mathrm{H}), 2.12-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.95-1.70(\mathrm{~m}, 4 \mathrm{H}), 1.55-1.45(\mathrm{~m}$, $2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.3,139.3,139.2,131.9$, $130.5,130.4,128.7,128.6,127.7,127.5,114.1,76.3,74.9,71.4$, 70.7, 68.5, 59.2, 58.9, 55.5, 52.1, 43.4, 36.9, 36.1, 36.0, 31.4, $30.0,27.2,23.5,23.0 ;$ MS $(\mathrm{m} / \mathrm{z}) 526,436,406,314,121,91$; EI-HRMS calcd for $\mathrm{C}_{34} \mathrm{H}_{41} \mathrm{NO}_{4}[\mathrm{M}-\mathrm{H}]^{+}(\mathrm{m} / z) 526.2957$, found 526.2961.

7,9-Bisbenzyloxy-6-(4-methoxybenzyl)-5-azatricyclo[6.3.1.0 ${ }^{1,5}$]dodecane-3-carboxylic Acid (33 β). A flask was charged with $\mathrm{CrO}_{3}(48 \mathrm{mg}, 0.48 \mathrm{mmol})$ then $1.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}(0.64$ $\mathrm{mL}, 0.96 \mathrm{mmol}$). To this solution was added the amino alcohol $\mathbf{2 9} \beta$ in acetone (5 mL) dropwise over 5 min . The resulting solution was stirred for 5 h at room temperature then 0.2 mL of $i-\mathrm{PrOH}$ was added and the solution was stirred for an additional 30 min . The mixture was filtered through Celite. The filter cake was washed with $\mathrm{CHCl}_{3}(5 \mathrm{~mL})$ and the filtrate was concentrated in vacuo. The residue was diluted with brine and extracted with ethyl acetate $(4 \times 5 \mathrm{~mL})$. The combined organic phases were washed with water (3 mL) and brine (3 mL), dried with MgSO_{4}, and concentrated in vacuo to give amino acid 33β ($52 \mathrm{mg}, 100 \%$) that was used in the next step without further purification. The ${ }^{1} \mathrm{H}$ NMR of this material showed a broad singlet at 12.1 ppm and the IR showed an absorption at $2925(\mathrm{OH})$ and $1732 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$.
[7,9-Bisbenzyloxy-6-(4-methoxybenzyl)-5-azatricyclo[6.3.1.0 ${ }^{1,5}$]dodec-3-yl]carbamic Acid Methyl Ester (34 β). Amino acid 33β ($52 \mathrm{mg}, 0.096 \mathrm{mmol}$) was dissolved in freshly distilled acetone (5 mL) and the solution was cooled to $0{ }^{\circ} \mathrm{C}$. Triethylamine ($0.052 \mathrm{~mL}, 0.37 \mathrm{mmol}$) and ethyl chloroformate $(0.021 \mathrm{~mL}, 0.22 \mathrm{mmol})$ were added and the reaction was stirred for 1 h at $0{ }^{\circ} \mathrm{C}$. Next $\mathrm{NaN}_{3}(0.044 \mathrm{~mL}$ of a 5.0 M aqueous solution, 0.22 mmol) was added and this solution was stirred for 1 h at $0^{\circ} \mathrm{C}$ and 15 min at room temperature, then the solution was diluted with water (3 mL) and extracted with $\mathrm{CHCl}_{3}(3 \times 5 \mathrm{~mL})$. The combined organic phases were washed with water (5 mL) and brine (5 mL), dried with MgSO_{4}, and concentrated in vacuo. The residue was azeotroped once with benzene under reduced pressure. The IR spectra of $\mathbf{3 1} \beta$ showed acyl azide absorptions at 1714 and $2138 \mathrm{~cm}^{-1}$. The acyl azide $\mathbf{3 1} \beta$ was dissolved in freshly distilled toluene $(20 \mathrm{~mL})$ and heated at $90^{\circ} \mathrm{C}$ for 45 min . Progress of this reaction was followed by taking aliquots and monitoring the formation of the isocyanate by IR (1699 and $2265 \mathrm{~cm}^{-1}$). Upon complete disappearance of the acyl azide absorptions, $\mathrm{MeOH}(1 \mathrm{~mL})$ was added to the reaction and it was heated at $90^{\circ} \mathrm{C}$ for 6 h . The solution was cooled to room temperature and concentrated in vacuo. The crude residue was purified by a flash chromatography over silica gel eluting first with 50:50 ethyl acetate: hexanes then a solution of $\mathrm{NH}_{4} \mathrm{OH} / \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (see general comments) to give methyl carbamate $\mathbf{3 4} \beta$ ($43 \mathrm{mg}, 78 \%$) as a colorless oil.

IR (film) $3323,2930,1717 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45-7.23(\mathrm{~m}, 10 \mathrm{H}), 7.08(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.48$ (br s, 1H), 4.52 (d, $J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.47$ (d, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $4.18(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.82-3.75(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H})$, 3.64 (s, 3 H), $3.62-3.51$ (br s, 1H), 3.34 (br s, 1H), 3.07-2.90 $(\mathrm{m}, 4 \mathrm{H}), 2.51(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.20(\mathrm{~m}, 1 \mathrm{H}), 2.10-1.85(\mathrm{~m}, 6 \mathrm{H}), 1.61$ $(\mathrm{m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.3,156.7,138.6,138.3$, $130.2,128.6,128.5,127.7,127.5,127.4,114.0,74.6,73.7,71.5$, $70.6,59.2,55.6,55.3,52.1,47.2,36.0,34.8,30.0,26.4,23.2$; MS (m / z) 569, 530, 479, 464, 449, 417, 91, 71, 57; EI-HRMS calcd for $\mathrm{C}_{35} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}-\mathrm{H}]^{+}(\mathrm{m} / \mathrm{z}) 569.3015$, found 569.3007.
[7,9-Bisbenzyloxy-6-(4-methoxybenzyl)-5-azatricyclo[6.3.1.0 ${ }^{1,5}$]dodec-3-yl]methylamine (32 β). A solution of meth-
yl carbamate 34β ($41 \mathrm{mg}, 0.072 \mathrm{mmol}$) in THF (10 mL) was cannulated into $\mathrm{LiAlH}_{4}(16 \mathrm{mg}, 0.43 \mathrm{mmol})$ at room temperature and the reaction was refluxed for 3 h . The reaction was cooled to room temperature, then water was added dropwise until a white solid precipitated. To this mixture was added MgSO_{4} then the solution was filtered through Celite. The filter cake was washed with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ and the filtrate was concentrated in vacuo. The residue was purified by flash chromatography over silica gel eluting first with 50:50 ethyl acetate:hexanes then a solution of $\mathrm{NH}_{4} \mathrm{OH} / \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (see general comments) to give amine $\mathbf{3 2} \beta(31 \mathrm{mg}, 82 \%)$.
$[\alpha]^{25} \mathrm{D}+38.40\left(c 0.015, \mathrm{CHCl}_{3}\right.$; IR (film) 3309 (br), $2929 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.25(\mathrm{~m}, 10 \mathrm{H}), 7.08(\mathrm{~d}, \mathcal{J}$ $=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.50(\mathrm{~d}, J=11.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.45(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.17$ (d, $J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{dd}, J=9.7,7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.49-3.42(\mathrm{~m}, 1 \mathrm{H}), 3.30(\mathrm{~m}, 1 \mathrm{H}), 3.22-3.13(\mathrm{~m}, 1 \mathrm{H}), 3.02$ (dd, $J=13.0,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.93-2.85(\mathrm{~m}, 2 \mathrm{H}), 2.72$ (dd, $J=$ $9.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{~m}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.20-1.92(\mathrm{~m}, 1 \mathrm{H})$, 1.97 (dd, $J=12.9,8.6 \mathrm{~Hz}, 1 \mathrm{H}$), $1.90-1.75(\mathrm{~m}, 4 \mathrm{H}), 1.62$ (dd, $J=12.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.44-1.33(\mathrm{~m}, 1 \mathrm{H}), 1.27(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.9,139.0,138.9,131.8,130.2$, $128.5,127.5,113.8,75.9,74.6,71.3,70.3,59.5,58.9,56.5,55.3$, $54.6,49.7,47.7,36.4,35.7,35.0,30.1,26.9,24.5$; MS (m / z) 525 , 435, 405, 149, 91, 69; EI-HRMS calcd for $\mathrm{C}_{34} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{3}$ [M $\mathrm{H}]^{+}(\mathrm{m} / \mathrm{z}) 525.3117$, found 525.3110 .
[7,9-Bisbenzyloxy-6-(4-methoxybenzyl)-5-azatricyclo-[6.3.1.01,5]dodec-3-yl]methylcarbamic Acid tert-Butyl Ester. To amine $\mathbf{3 2} \beta$ ($13 \mathrm{mg}, 0.027 \mathrm{mmol}$) in ethyl acetate (5 mL) was added $\mathrm{Et}_{3} \mathrm{~N}(0.1 \mathrm{~mL})$, followed by (Boc) $)_{2} \mathrm{O}(12 \mathrm{mg}$, 0.055 mmol) at room temperature. After 7 h , the solution was concentrated in vacuo, and the residue was purified by flash column chromatography eluting with 50:50 hexanes:ethyl acetate to give the corresponding carbamate ($15 \mathrm{mg}, 90 \%$).
$[\alpha]^{25}{ }_{\mathrm{D}}+19.50\left(c \quad 0.026, \mathrm{CHCl}_{3}\right)$; IR (film) 2928, 1687, 1247, $1150 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43-7.27(\mathrm{~m}, 10 \mathrm{H})$, 7.14 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.82$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.87$ (br s, $1 \mathrm{H}), 4.58(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.46$ (d, $J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H})$, 3.70 (br s, 1H), $3.64-3.53(\mathrm{~m}, 1 \mathrm{H}), 3.39$ (br s, 1 H), $3.10-2.82$ $(\mathrm{m}, 4 \mathrm{H}), 2.75(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.18-2.06(\mathrm{~m}, 2 \mathrm{H}), 2.04-$ $1.82(\mathrm{~m}, 4 \mathrm{H}), 1.80-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{~s}$, $9 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.0,156.0,139.1,138.9$, $131.8,130.1,128.5,127.6,127.5,127.2,113.8,79.3,74.7,71.3$, $70.4,58.9,58.0,55.3,51.1,43.8,36.5,35.7,31.6,28.7,26.9$; MS (m / z) 624, 569, 553, 535, 505, 449, 415, 359, 121, 91, 71; EI-HRMS calcd for $\mathrm{C}_{35} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{5}\left(\mathrm{C}_{39} \mathrm{H}_{50} \mathrm{~N}_{2} \mathrm{O}_{5}-\mathrm{C}_{4} \mathrm{H}_{9}\right)[\mathrm{M}]^{+}$ (m / z) 569.3015, found 569.3041.
[7,9-Dihydroxy-6-(4-methoxybenzyl)-5-azatricyclo[6.3.1.0 ${ }^{1,5}$]dodec-3-yl]methylcarbamic Acid tert-Butyl Ester (35β). To the carbamate ($13 \mathrm{mg}, 0.029 \mathrm{mmol}$) in MeOH (5 mL) was added $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(119 \mathrm{mg})$. The vessel was flushed with H_{2} and shaken for 12 h under 50 psi of H_{2} pressure in a Parr hydrogenation apparatus. The resulting solution was filtered through Celite (5 g) and the filtrate was concentrated in vacuo to give diol $\mathbf{3 5} \beta(7 \mathrm{mg}, 78 \%)$ as colorless oil. The ${ }^{1} \mathrm{H}$ NMR spectrum shows very broad signals except for the aromatic (doublets), methoxy (singlet), and tert-butyl (singlet) resonances. Similar observations were seen by Snider on a closely related substrate. ${ }^{2 a}$
[9-(Bisbenzyloxyphosphoryloxy)-7-hydroxy-6-(4-meth-oxybenzyl)-5-azatricyclo[6.3.1.0 ${ }^{1,5}$]dodec-3-yl]methylcarbamic Acid tert-Butyl Ester (36 β). To a solution of diol $\mathbf{3 5} \beta$ $(4 \mathrm{mg}, 0.009 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added $1 H$ tetrazole ($61 \mu \mathrm{~L}$ of a 3% in $\mathrm{CH}_{3} \mathrm{CN}$ solution, 0.021 mmol), followed by addition of N, N-diisopropyl dibenzyl phosphoramidite ($6.0 \mu \mathrm{~L}, 0.054 \mathrm{mmol}$). The reaction was stirred at room temperature for 2 h then cooled to $0^{\circ} \mathrm{C}$ before adding t - BuOOH ($2.0 \mu \mathrm{~L}$ of $5-6 \mathrm{M}$ in decane, 0.090 mmol). After 45 min , a saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution was added, the organic phase was separated, and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 3 \mathrm{~mL}$). The combined organic phases were washed with
water (2 mL) and brine (2 mL), dried with MgSO_{4}, and concentrated in vacuo. The residue was purified by flash chromatography eluting with a solution of $\mathrm{NH}_{4} \mathrm{OH} / \mathrm{MeOH} / \mathrm{CH}_{2}-$ Cl_{2} (see general comments) to give phosophate $\mathbf{3 6} \beta(2 \mathrm{mg}, 38 \%)$. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectral data completely matched that reported by Sorensen. ${ }^{2 b}$
$[\alpha]^{25}{ }_{\mathrm{D}}+7.4\left(c 0.002, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.33-7.28(\mathrm{~m}, 10 \mathrm{H}), 7.16(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 5.03-4.98(\mathrm{~m}, 4 \mathrm{H}), 4.75$ (br s, 1H), 4.33 (br s, 1H), $3.81(\mathrm{~s}, 3 \mathrm{H}), 3.41(\mathrm{~m}, 1 \mathrm{H}), 3.31(\mathrm{~m}, 1 \mathrm{H}), 3.15(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.80$ $(\mathrm{m}, 2 \mathrm{H}), 2.73(\mathrm{~s}, 3 \mathrm{H}), 2.70(\mathrm{~m}, 1 \mathrm{H}), 2.12(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.02(\mathrm{~m}$, $1 \mathrm{H}), 1.87$ (dd, $J=13.3,10.4 \mathrm{~Hz}, 1 \mathrm{H}$), $1.87-1.75$ (m, 4H), $1.64-$ $1.50(\mathrm{~m}, 2 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 1.41$ (dd, $J=13.1,6.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.2,156.0,136.1,130.9,130.2$, 128.7, 128.1, 114.0, 79.6, 75.1, 69.4, 67.0, 58.6, 58.5, 55.4, 51.5, 50.3, 43.6, 43.1, 35.9, 29.9, 28.9, 28.7; MS (m/z) 706, 675, 661, 647, 633, 619, 585, 379, 274, 207, 163, 147, 105, 91, 79; EIHRMS calcd for $\mathrm{C}_{39} \mathrm{H}_{52} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{P}[\mathrm{M}+\mathrm{H}]^{+}(\mathrm{m} / \mathrm{z}) 707.3461$, found 707.3452.

Acknowledgment. We thank the University of Pittsburgh and the National Institutes of Health for supporting this research and Dr. Steven Geib, University of Pittsburgh, and Dr. Jeff Petersen, West Virginia University, for X-ray crystallographic analysis. We also thank Professor Eric Sorensen for generously providing of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of compound $\mathbf{3 6} \beta$. We also would like to thank Li Sha for early investigations of this project.

Supporting Information Available: Spectra for all new compounds and X-ray crystallographic data (CIF file). This material is available free of charge via the Internet at http://pubs.acs.org.

JO0483567

[^0]: (1) Sakamoto, K.; Tsujii, E.; Abe, F.; Nakanishi, T.; Yamashita, M.; Shigematsu, N.; Izumi, S.; Okuhara, M. J. Antibiot. 1996, 49, 37.

[^1]: (2) For total syntheses of (-)-FR901483, see: (a) Snider, B. B.; Lin, H. J. Am. Chem. Soc. 1999, 121, 7778. (b) Scheffler, G.; Seike, H.; Sorensen, E. J. Angew. Chem., Int. Ed. 2000, 39, 4593. (c) Ousmer, M.; Braun, N. A.; Ciufolini, M. A. Org. Lett. 2001, 3, 765. For the total synthesis of (\pm)-FR901483, see: (d) Maeng, J.-H.; Funk, R. L. Org. Lett. 2001, 3, 1125. (e) Kan, T.; Fujimoto, T.; Ieda, S.; Asoh, Y.; Kitaoka, H.; Fukuyama, T. Org. Lett. 2004, 6, 2729. For approaches to FR901483 and its analogues, see: (f) Quirante, J.; Escolano, C.; Massot, M.; Bonjoch, J. Tetrahedron 1997, 53, 1391. (g) Yamazaki, N.; Suzuki, H.; Kibayashi, C. J. Org. Chem. 1997, 62, 8280. (h) Braun, N. A.; Ciufolini, M. A.; Peters, K.; Peters, E.-M. Tetrahedron Lett. 1998, 39, 4667. (i) Snider, B. B.; Lin, H.; Foxman, B. M. J. Org. Chem. 1998, 63, 6442. (j) Kropf, J. E.; Weinreb, S. M. Abstracts of Papers, 222nd National Meeting of the American Chemical Society, Chicago, IL, August 2630, 2001; American Chemical Society: Washington, DC, 2001; ORGN373. (k) Bonjoch, J.; Diaba, F.; Puigbo, E.; Sole, D.; Segarra, V.; Santamaria, L.; Beleta, J.; Ryder, H.; Palacios, J.-M. Biorg. Med. Chem. 1999, 7, 2891. (l) Brummond, K. M.; Lu, J. Org. Lett. 2001, 3, 1347. (m) Bonjoch, J.; Diaba, F.; Puigbo, E.; Sole, D. Tetrahedron Lett. 2003, 44, 8387 (n) Panchaud, P.; Ollivier, C.; Renaud, P.; Zigmantas, S. J. Org. Chem. 2004, 69, 2755.

[^2]: (3) Reviews on bridgehead imines: Warner, P. M. Chem. Rev. 1989, 89, 1067. Eguchi, S.; Okano, T.; Takeuchi, H. Heterocycles 1987, 26, 3265.
 (4) For reviews, see: (a) Overman, L. E.; Ricca, D. J. Comput. Org. Synth. 1991, 2, 1007. (b) Overman, L. E. Acc. Chem. Res. 1992, 25, 352. (c) Overman, L. E.; Kakimoto, M.-a.; Okazaki, M. E.; Meier, G. P. J. Am. Chem. Soc. 1983, 105, 6622.

[^3]: (12) Sakaitani, M.; Ohfune, Y. J. Org. Chem. 1990, 55, 870.

[^4]: (13) Salvatore, R. N.; Nagle, A. S.; Schmidt, S. E.; Jung, K.-W. Org. Lett. 1999, 1, 1893.
 (14) Salvatore, R. N.; Shin, S.-I.; Flanders, V. L.; Jung, K.-W. Tetrahedron Lett. 2001, 42, 1799.
 (15) Compound 21 was prepared by treating 2-hydroxybut-3-enoic methyl ester with TBSCl and imidazole in DMF and subsequent hydrolysis with LiOH in THF/ $\mathrm{H}_{2} \mathrm{O}$. Stach, H.; Huggernberg, W.; Hesse, M. Helv. Chim. Acta 1987, 70, 369.

[^5]: (16) Deng, W.; Overman, L. E. J. Am. Chem. Soc. 1994, 116, 11241.
 (17) Savard, J.; Brassard, P. Tetrahedron 1984, 40, 3455

[^6]: (18) Baigrie, L. M.; Seiklay H. R.; Tidwell, T. T. J. Am. Chem. Soc. 1985, 107, 5391.
 (19) (a) Northrup, A. B.; MacMillan, D. W. C. J. Am. Chem. Soc. 2002, 124, 6798. (b) Vignola, N.; List, B. J. Am. Chem. Soc. 2004, 126, 450.

[^7]: (20) Overman, L. E.; Taylor, G. F.; Petty, C. B.; Jessup, P. J. J. Org. Chem. 1978, 43, 2164.
 (21) At this time the solubility differences cannot be explained. However, large quantities of palladium catalyst were used in the removal of the benzyl ether groups that may be a contributing factor.
 (22) Yu, L.-L.; Fraser-Reid, B. Tetrahedon Lett. 1988, 29, 979.

[^8]: (23) Jurczak, J.; Gryko, D.; Kobrzycka, E.; Gruza, H.; Prokopowicz, P. Tetrahedron 1998, 54, 6051. Jegham, S.; Das, B. C. Tetrahedron Lett. 1988, 29, 4419. When the Swern oxidation was allowed to warm to room temperature, complete racemization of the aldehyde was observed.

